Цифровые фотоаппараты

       

Фотовспышки


Интернет-Университет Информационных Технологий

   http://www.INTUIT.ru

Цифровые фотоаппараты
9. Лекция:

Фотовспышки: версия для печати и PDA

Электронный импульсный осветитель, встроенный в цифровой фотоаппарат, инструмент, без которого фотографу зачастую трудно обойтись. Но лампа-вспышка имеет как свои плюсы, так и свои минусы. В полной мере она проявляет свои возможности только в руках умелого, опытного фотографа.

Цель лекции - рассказать о типах, устройстве и применении встроенных и подключаемых электронных ламп-вспышек.

В любом цифровом фотоаппарате, кроме самых дешевых камер-игрушек, есть встроенная электронная вспышка. Питание встроенной вспышки осуществляется от основного аккумулятора или батареи сухих элементов камеры. В фотоаппаратах старшей группы, в полупрофессиональных и профессиональных камерах встроенная вспышка дополнена колодкой подключения внешней лампы, а иногда и гнездом для кабельного подключения вспышки. Наличие подобной колодки значительно расширяет применение фотоаппарата, поскольку позволяет экспериментировать с источниками искусственного света, добиваясь особых эффектов освещения. Еще больше возможностей предоставляет отдельный синхроконтакт, поскольку в этом случае дополнительную вспышку можно присоединить к фотоаппарату через кронштейн, который крепится к штативному гнезду камеры. При этом лампу можно направить не только непосредственно на объект съемки, но и на какую-либо отражающую поверхность - стену, потолок, специальный отражатель.


Рис. 9.1.  Внешняя электронная лампа-вспышка


Рис. 9.2.  Встроенная лампа-вспышка цифрового фотоаппарата

Встроенные вспышки цифровых фотоаппаратов могут значительно различаться по степени автоматизации управления. В недорогих любительских камерах начального уровня замер освещенности при работе вспышки осуществляется отдельным датчиком, расположенным на лицевой панели корпуса камеры. Когда основной экспонометр фотоаппарата фиксирует недостаточный уровень освещенности, устанавливается выдержка синхронизации (обычно 1/60 c) и в работу включается вспышка. При этом датчик вспышки замеряет общий уровень освещенности, и в соответствии с этими данными блок автоматики устанавливает диафрагму объектива, при которой экспозиция сенсора будет правильной.

Подобный механизм управления встроенной вспышкой часто приводит к экспозиционным ошибкам. Если снимать с включенной вспышкой портрет человека на темном фоне, то, исходя из уровня общей освещенности, автомат вспышки откроет диафрагму больше, чем требуется для получения качественного снимка. Лицо на фотографии получится излишне светлым (передержка), а фон будет экспонирован нормально. Так же обстоит дело и при съемке темных фигур на светлом фоне (лицо получится недодержанным, фон нормальным). Поэтому при работе автоматической вспышки с отдельным датчиком следует выбирать для съемки объекты с небольшими перепадами яркостей.

Иначе устроена система управления автоматической встроенной вспышкой в фотоаппаратах средней и старшей ценовой группы. Здесь в качестве датчика вспышки используется основной TTL-датчик системы экспозамера, как правило, точечный (измерение уровня освещенности по центральной части кадра). Установка экспозиции производится не только изменением диафрагмы, но и регулировкой длительности светового импульса - в зависимости от применяемого программного режима камеры. К примеру, в режиме "ночной портрет" будет установлено максимальное значение диафрагмы для достижения минимальной глубины резкости, а к электродам лампы будет подведен потенциал меньшей величины для ограничения светового потока вспышки, чтобы не допустить передержки. В программном режиме "пейзажная съемка" ситуация будет обратной. Автомат установит минимально возможную диафрагму для достижения как можно большей глубины резкости, а световой поток лампы будет максимальным (правда, в пейзажной съемке вспышка плохой помощник - из-за небольшой дальности действия).

Уровень освещенности при работе лампы-вспышки зависит еще и от расстояния между камерой и объектом съемки. Чем дальше находится объект, тем меньше света от импульсной лампы на него попадает. В схеме управления встроенными вспышками с отдельным датчиком предусмотрен автоматический ввод экспозиционной поправки системой автофокуса камеры. То есть дальномер камеры определяет расстояние до объекта съемки и в соответствии с этим автомат вспышки устанавливает необходимую для правильной экспозиции диафрагму. Фотоаппараты со вспышками с регулируемым световым потоком и замером уровня освещенности через основной объектив и в этом случае работают точнее, поскольку измеряют уровень освещенности по сфокусированному изображению.

Мощность любой фотовспышки, в том числе и встроенной, выражается неизменяемой количественной величиной - ведущим числом. Ведущее число - это произведение значения диафрагмы объектива на расстояние от камеры до снимаемого объекта в метрах, при которых светочувствительный материал (пленка или сенсор) будет экспонирован правильно. К примеру, при освещении объекта съемки, расположенного на расстоянии в 2,5 м, вспышкой с ведущим числом 10 диафрагма должна быть установлена на f/4 (2,5х4=10).

Чем больше ведущее число, тем вспышка мощнее и тем больше дальность ее действия. При той же диафрагме f/4 вспышка с ведущим числом 20 позволяет фотографировать объекты, расположенные на расстоянии 5 м, а вспышка с ведущим числом 40 - на расстоянии 10 м.


Рис. 9.3.  Любительская лампа-вспышка


Рис. 9.4.  Профессиональная вспышка

Ведущее число вспышки вычисляется для пленки чувствительностью в 100 единиц ISO (между прочим, чувствительностью в 100 ISO обладает большинство сенсоров цифровых фотоаппаратов). То есть для пленки (сенсора) чувствительностью в 200 единиц ISO, дальность действия вспышки удвоится, для пленки чувствительностью в 400 единиц ISO - увеличится в 4 раза. Увеличивая значение чувствительности сенсора в установках цифровой камеры (через экранное меню дисплея), мы увеличим эффективную дальность действия встроенной вспышки (правда, при этом возрастет и уровень шумов).

Цифровые фотоаппараты оснащаются встроенными вспышками небольшой мощности. Обычно встроенные вспышки имеют ведущее число порядка 10-12 и служат лишь в качестве источника света для съемки крупных планов с близкого расстояния. Вспышки большей емкости значительно сократили бы срок автономной работы фотоаппарата. Впрочем, применение вспышки и так сказывается на продолжительности работы. Если без применения вспышки цифровая камера способна отснять 100 кадров, то вспышка сокращает это количество примерно вдвое.

При съемке автоматической цифровой камерой мы часто сталкиваемся с ситуациями, когда фотоаппарат блокирует спусковую кнопку, не давая возможности сделать снимок. Происходит это либо при неправильной наводке на резкость механизмом автоматической фокусировки (объект расположен слишком близко, а режим макросъемки не выбран, или в зоне датчика автофокуса слишком много контрастных объектов, находящихся на разных расстояниях от камеры), либо при ошибках в определении экспонометрических параметров (освещенность слишком велика или слишком мала, и автомат не может выбрать сочетание выдержки-диафрагмы, при котором сенсор будет экспонирован правильно). Встроенная вспышка подобной блокировкой не оснащена (не считая естественного ограничения функционирования вспышки во время заряда конденсатора - до восстановления заряда вспышка попросту не сработает). То есть снимок будет сделан даже в том случае, если объект находится за границей эффективной дальности вспышки. Поэтому знать максимальную дальность действия встроенной вспышки своей камеры должен каждый фотолюбитель.

Существует еще несколько особенностей применения встроенной вспышки. Поскольку встроенный импульсный осветитель является устройством общего применения и располагается на лицевой панели фотоаппарата, он не годится для макросъемки с минимального расстояния. То есть при съемке предметов, находящихся на удалении от камеры сантиметров в 70, вспышка будет работать, хотя почти наверняка "переосветит" снимаемый объект. А при съемке с 5-10 см (например, при фотографировании насекомых) следует применять либо специальную, надеваемую на объектив, кольцевую вспышку, либо выносной осветитель, расположенный сбоку.

Не пригодится встроенная вспышка при микро- и телескопической съемке, то есть при фотографировании через микроскоп или зрительную трубу. При пейзажной или архитектурной съемке вспышка тоже окажется бесполезной. Пейзаж подразумевает съемку дальнего плана, находящегося далеко за границей дальности действия вспышки, а при архитектурной съемке с широкоугольным объективом или зуммируемым объективом, установленным на минимальное фокусное расстояние, вспышка даст множество отсветов и теней, искажающих рельеф архитектурных деталей. То же касается и съемки интерьеров, если вспышка не применяется для достижения особых художественных эффектов.

Основной недостаток встроенной вспышки - близкое расположение лампы от основного объектива. Свет от импульсного осветителя падает на объект съемки и отражается под малым углом. Поэтому освещение встроенной вспышкой приводит к эффекту "плоского" изображения, при котором выступающие детали и плоские поверхности не выделяются, а тени приобретают резкие контрастные границы. Особенно это заметно при съемке портретов.

В некоторой степени положение спасают встроенные вспышки с комбинированными осветителями (пример - фотоаппараты Olympus). В таких вспышках применяется не одна а две лампы, либо светорассеиватель лампы разделен на две половины, верхняя часть используется в качестве источника заполняющего света (подсвечивает потолок, играющий в данном случае роль отражательного экрана), нижняя часть - в качестве источника рисующего света (направляется прямо на снимаемый объект). Но в любом случае эта конструкция не является альтернативой применению выносных вспышек, при помощи которых можно получить различные варианты освещения.

Еще один неприятный эффект встроенных вспышек проявляется при съемке портретов. Это эффект "красных глаз". Очень часто на снимках людей с применением вспышки глаза получаются неестественно светящимися. Происходит это потому, что в условиях недостаточной освещенности луч света от лампы-вспышки попадает на глазное дно через широко раскрытый зрачок, отражается и возвращается в объектив камеры.

Избавиться от эффекта "красных глаз" можно двумя способами - увеличить угол отражения света, переместив вспышку дальше от объектива фотоаппарата, либо заставить зрачок глаза сузиться и тем самым уменьшить угол отражения света. Первый способ без дополнительно подключаемой вспышки применить невозможно. А суть действия второго способа заключается в том, что при сужении зрачка угол отражения светового луча тоже сужается, и отраженный от глазного дна свет не попадает в объектив. Этот способ срабатывает даже тогда, когда вспышка расположена прямо над объективом фотоаппарата (луч отраженного от глазного дна света попадает под объектив - на то же расстояние, на котором располагается от объектива рассеиватель вспышки). Проблема лишь в том, что предварительная засветка, заставляющая зрачки сужаться, должна быть такой интенсивности, чтобы глаза человека (и животного тоже, поскольку эффект этот проявляется при съемке любого живого существа со схожим строением глаз) на нее среагировали.

В простых пленочных "мыльницах" в качестве источника света для предварительной засветки используется излучающий светодиод. Несмотря на фокусирующую линзу, светодиодный механизм защиты от "красных глаз" абсолютно неэффективен, слишком мал световой поток, и глаз на него не реагирует.

В пленочных зеркальных фотоаппаратах и в профессиональных цифровых камерах, сконструированных на их базе, в качестве источника предварительной подсветки используется небольшой прожектор белого свечения (пример - все цифровые "зеркалки" Nikon). Лампа прожектора установлена на лицевой панели фотоаппарата со стороны спусковой кнопки. Этот же прожектор используется для подсветки снимаемого объекта в условиях недостаточной освещенности, когда датчики пассивного автофокуса неспособны справиться с наводкой объектива на резкость.

Подсветка прожектором очень эффективна и комфортна, поскольку дает узконаправленный луч света, заставляющий зрачок глаза моментально сузиться, но при этом не ослепляет фотографируемого человека. Прожектор потребляет меньше энергии, чем встроенная вспышка, хотя и несколько усложняет конструкцию камеры. Наконец, прожектор не снижает быстродействие фотоаппарата, поскольку схема питания лампы предварительной подсветки не влияет на заряд конденсатора встроенной вспышки. А недостаток прожектора в том, что его лампу легко закрыть правой рукой - размеры современных фотоаппаратов невелики, а потому фотографу приходится следить за положением собственных пальцев.

В большинстве пленочных фотоаппаратов среднего класса, равно как и в абсолютном большинстве цифровых камер, для подавления эффекта "красных глаз" в качестве источника подсветки используется сама вспышка. При включенном режиме подавления эффекта "красных глаз" в момент нажатия на кнопку спуска вспышка дает один или несколько (цифровые фотоаппараты Olympus) световых импульсов небольшой мощности, заставляя зрачки сузиться. Затем происходит срабатывание затвора, и вспышка выдает основной световой импульс. Как и в камерах с прожектором, предвспышка работает в условиях низкой освещенности в качестве источника подсветки автофокуса. Короткого светового импульса (или серии импульсов) хватает для того, чтобы датчики дальномера автоматической фокусировки определили расстояние до снимаемого объекта.

Использование предварительной вспышки для подавления эффекта "красных глаз" работает очень эффективно, однако имеет несколько побочных последствий. Во-первых, этот способ не комфортен, поскольку световой импульс усиливает эффект ослепления фотографируемого человека (после предварительной вспышки зрачок начинает расширяться и в этот момент происходит основная вспышка). Во-вторых, предвспышка снижает быстродействие камеры, причем, настолько, что в некоторых моделях цифровых фотоаппаратов с момента нажатия на спусковую кнопку, до срабатывания затвора, проходит около секунды, если ни больше. В-третьих, применение предвспышки требует от обладателя цифровой камеры некоторого навыка. Дело в том, что многие фотолюбители инстинктивно реагируют на предвспышку, как на основной световой импульс, тем более что затвор многих цифровых "компактов" срабатывает практически бесшумно. Фотограф сдвигает камеру, полагая, что снимок сделан, и в это время срабатывает затвор. Снимок оказывается безнадежно испорченным.

Чтобы не ошибиться при использовании встроенной лампы-вспышки достаточно следовать простым правилам. Не включать автоматический режим работы вспышки, полностью полагаясь на автоматику - то есть отключать вспышку принудительно и включать только тогда, когда ее применение неизбежно. Не снимать со вспышкой объекты, расположенные ближе 2 и дальше 5 метров. Именно в этом диапазоне расстояний лампа-вспышка будет работать наиболее эффективно. Правильно держать фотоаппарат, не перекрывая пальцами левой руки окошко датчика вспышки, иначе лампа будет всегда давать импульс максимальной интенсивности, а диафрагма объектива будет всегда максимально открытой, что приведет к передержке.

Конструкция корпуса компактной цифровой камеры рассчитана на то, что фотограф будет работать с фотоаппаратом одной правой рукой. В отличие от приемов работы с пленочными фотоаппаратами, с цифровой камерой фотограф обычно работает одной правой рукой - левая рука остается свободной, и к этому надо привыкнуть. В крайнем случае, можно поддерживать фотоаппарат левой рукой снизу, но не обхватывать корпус камеры, как мы делаем, снимая пленочной "зеркалкой" или "дальномеркой". Это кажется неудобным, но иначе мы будем постоянно перекрывать пальцами левой руки светоприемники экспозиционной автоматики, датчика вспышки, саму вспышку и даже касаться раздвижного тубуса объектива, что чревато поломками моторного привода изменения фокусного расстояния и механизма автоматической фокусировки.

Другое дело крупные зеркальные камеры, "суперзумы" и большие просьюмерские фотоаппараты. Здесь применимы те же навыки, что и при работе с пленочной аппаратурой. Более того, такие камеры, как Panasonic Lumix DMC-FX50 и Sony DSC R-1, специально сконструированы так, что ими надо снимать, держа камеру обеими руками - левая при этом обхватывает объектив снизу и пальцы укладываются на кольца ручной фокусировки и зуммирования объектива.

И еще одна, не вполне "техническая" рекомендация - не использовать без особой надобности вспышку в общественных местах. В театрах и кинозалах это вообще недопустимо, в переполненном транспорте или в очереди может привести к неожиданным последствиям - не всем нравится слепящий световой импульс. А при репортажной съемке всякого рода бедствий вспышка может навлечь на фотографа гнев пострадавших людей. Впрочем, профессиональные фоторепортеры умеют снимать в любых ситуациях так, что это не выходит за рамки общепринятых этических норм.

Если элементарных сведений об устройстве и основных применениях фотовспышек хватит большинству фотолюбителей, занимающихся семейной фотографией или снимающих время от времени исключительно для удовольствия, то для занятия творческой фотографией их явно недостаточно.

Сначала рассмотрим дополнительные и относительно редко используемые возможности встроенной вспышки. В первую очередь, это режим медленной синхронизации, аналогичный синхронизации по второй шторке для пленочных фотоаппаратов. В обычном режиме вспышка срабатывает в момент полного открытия кадрового окна, соответствующий выдержкам шторного затвора (оптимальная выдержка называется выдержкой синхронизации) от 1/30 до 1/125 с в зависимости от конструкции затвора. Применение слишком коротких выдержек в камерах со шторным затвором приведет к частичному экспонированию кадра, хотя центральные затворы позволяют применять вспышку во всем диапазоне выдержек. Длительность светового импульса короче, чем время полного открытия кадрового окна и составляет от 1/100 в простых до 1/2000 в "интеллектуальных" (с развитым автоматическим управлением) вспышках.

Применение импульсных осветителей в фотографии обусловлено двумя причинами. Первая - недостаточное для правильного экспонирования светочувствительного материала (пленки или сенсора) освещение, которое исключает использование коротких выдержек для съемки с рук без применения штатива. И вторая причина - рассеянный характер освещения, при котором трудно передать рельеф фотографируемого объекта. В этом случае естественный свет (проникающий через окно в помещение или свет облачного неба) используется в качестве основного (заполняющего), а расположенная сбоку от камеры вспышка - в качестве дополнительного (рисующего) источника света.

В любительской практике фотовспышка чаще используется при недостаточном уровне освещения и реже для достижения особой выразительности снимка. Тем не менее, работа со вспышкой даже в наиболее простых случаях требует определенных навыков. В руках неопытного фотографа вспышка может быть не столько эффективным помощником, сколько существенной помехой, способной испортить любой кадр.

Источником света в импульсном осветителе служит газоразрядная лампа со встроенным отражателем. Лампа представляет собой наполненную инертным газом (ксеноном) вытянутую стеклянную колбу, в концы которой впаяны электроды. Работает ксеноновая лампа следующим образом. Конденсатор большой емкости накапливает на одном из основных электродов лампы электрический потенциал. В момент срабатывания затвора через синхроконтакт фотоаппарата на зажигающий электрод лампы подается ток. При этом потенциал электрода зажигания складывается с основным потенциалом, разность потенциалов достигает критической величины и между электродами лампы возникает электрическая дуга. Продолжительность свечения дуги составляет от 1/100 до 1/2000 с, а спектр излучаемого света близок к спектру дневного света.

Электрическая схема электронной вспышки состоит из блока питания, преобразователя напряжения, повышающего напряжение питания до 200-300 вольт, электролитического конденсатора большой емкости, самой ксеноновой лампы и блока зажигания, соединенного с синхроконтактом фотоаппарата. Синхроконтакт - это пара электрических контактов, замыкаемых в момент срабатывания затвора камеры. Соединение синхроконтакта со вспышкой может быть выполнено в виде отдельного гнезда на корпусе камеры (кабельное соединение) или в виде контакта на колодке подключения дополнительных устройств (бескабельное соединение).

По типу питания вспышки подразделяются на сетевые, автономные и универсальные. Сетевые вспышки самые простые и дешевые. Заряд их конденсатора производится непосредственно от сети переменного тока, а повышающий напряжение преобразователь отсутствует. В автономных вспышках питание от сети не предусмотрено, а источником электроэнергии служит батарея сменных сухих элементов или аккумулятор. Универсальные вспышки могут работать и в режиме сетевого питания, и в автономном режиме.

Конструктивно фотовспышки выполняются либо подключаемыми внешними, либо встраиваемыми в фотоаппарат. Наконец, вспышки могут не иметь системы регулировки длительности светового импульса (неуправляемые лампы) или иметь развитую систему автоматической регулировки (управляемые вспышки).

В классических шторных затворах, в которых шторки перематываются справа налево, съемка с лампой-вспышкой быстро движущегося слева направо объекта в режиме слежения (то есть перемещая камеру вслед за движущимся объектом), приведет к проявлению эффекта движения назад. Это происходит потому, что в момент открытия первой шторки происходит экспонирование пленки (сенсора), при котором вспышка еще не работает, затем, после полного раскрытия кадрового окна, срабатывает вспышка, и происходит повторное экспонирование, уже при освещении световым импульсом. Изображение смазывается вперед, создавая ощущение, что объект перемещается в обратную сторону. Синхронизация по второй шторке затвора позволяет избавиться от этого эффекта.

В высокоскоростных ламельных затворах, в которых шторки движутся сверху вниз (вдоль короткой стороны кадра), подобный эффект отсутствует, а режим синхронизации по второй шторке задействован в режиме ночной съемки, в частности, в программе "ночной портрет". При этом в момент открытия кадрового окна первой ламелью затвора происходит экспонирование темного фона, а в момент начала движения второй ламели срабатывает вспышка и экспонируется объект съемки (например, человек). В результате яркости фона и лица портретируемого выравниваются, становятся различимы детали фона.

Другая функциональная возможность встроенной вспышки цифрового фотоаппарата - серийная съемка с импульсным осветителем. Если в фотоаппаратах среднего любительского уровня при одновременном включении принудительного режима работы вспышки и серийной (кадр за кадром при нажатии спусковой кнопки) съемки вспышка сработает лишь один раз и затем выключится, то в некоторых камерах старшей группы вспышка будет срабатывать каждый раз до полного разряда конденсатора. При этом энергия светового импульса активно снижается. Встроенная вспышка способна обеспечить экспозицию серии из 3-5 кадров, мощные подключаемые лампы - до нескольких десятков кадров.

Режим принудительного включения встроенной вспышки будет полезным при ярком солнце, когда теневые переходы имеют наибольший контраст. Вспышка выравнивает перепады яркости и снимок получается лучше проработанным в деталях. Но при этом надо следить, чтобы на снимке не возникло двойных теней - от основного источника света (от солнца) и от вспышки. То есть фоновая поверхность (например, стена здания) должна располагаться на достаточном удалении от объекта съемки.

Как бы ни были совершенны встроенные фотовспышки, внешних осветителей они не заменят. При этом внешней вспышкой может пользоваться и владелец недорогой цифровой камеры, которая не оборудована колодкой для подключения внешних фотовспышек или отдельным синхроконтактом. Речь идет об автономных импульсных фотоосветителях с дистанционным зажиганием лампы. Эти вспышки оснащены светоприемником, реагирующим на световой импульс встроенной в фотоаппарат вспышки. В момент срабатывания основной вспышки происходит срабатывание и дополнительного осветителя. При этом основная вспышка будет ведущим источником света, а внешняя вспышка - ведомым источником. Световой поток ведомого осветителя регулируется вручную либо автоматически, если вспышка согласована с импульсным осветителем конкретной модели фотоаппарата. Подобные вспышки выпускаются для своих камер компанией Canon и производителями фотоаксессуаров. К слову - стоят автономные вспышки с дистанционным зажиганием лампы (в фототехнике в обиходе другой термин, который не особенно благозвучен - "поджиг", или вспышка с дистанционным "поджигом") намного дешевле других импульсных осветителей - буквально, в разы. Применение второй фотовспышки позволяет добиться более реалистичного освещения снимаемого объекта и избежать эффекта "плоского" изображения.


Рис. 9.5.  Автономная вспышка с дистанционным зажиганием

Если вспышка с дистанционным беспроводным зажиганием недоступна или в распоряжении фотографа есть обычная вспышка, то можно обойтись и этим набором, дополнив дополнительную вспышку или даже несколько вспышек беспроводными синхронизаторами. В этом случае синхронизатор реагирует на световой импульс встроенной вспышки и приводит к срабатыванию дополнительных вспышек.

Синхронизатор представляет собой устройство с гнездом для штативной гайки, со световым датчиком и поворотной колодкой с центральным контактом для крепления вспышки. Синхронизатор крепят на штативе, ориентируя окно датчика на встроенную (или подключенную к камере основную) вспышку, а импульсный осветитель вставляют в колодку и направляют в выбранную сторону - на объект съемки, на задник или на потолок.

Таким образом, беспроводной синхронизатор значительно расширяет функциональность фотовспышки. Во-первых, он позволяет применять дополнительные импульсные осветители с камерами, не имеющими ни колодок для подключения внешних вспышек, ни отдельных синхроконтактов, начиная с пленочных "мыльниц", заканчивая компактными цифровыми камерами. Во-вторых, набор вспышек, расставленных на штативах и снабженных синхронизаторами, позволяет создавать неограниченное количество вариантов освещения - от простой подсветки фона, до специального узконаправленного рисующего луча.

Главное в применении дополнительных вспышек с синхронизаторами - добиться того, чтобы их световой поток не перекрывал световой поток основной вспышки, поскольку автоматика камеры будет выбирать диафрагму объектива без учета уровня освещенности снимаемого объекта дополнительными источниками. Кроме того, фотограф должен представлять себе конечный результат съемки - световую картину, которая сложится при срабатывании всех импульсных осветителей. При работе с пленочной камерой это задача не из простых, но цифровой фотоаппарат позволяет увидеть снимок сразу после срабатывания затвора. И в случае неудачи фотограф может тут же приглушить свет от дополнительных вспышек экранами, откорректировать расположение осветителей или самого снимаемого объекта.

Понятное дело, что в данном случае мы говорим о павильонной съемке. Но легкий штатив и автономная вспышка небольшой мощности с дистанционным зажиганием или дополненная синхронизатором, позволяют использовать выносной осветитель и для съемки на выезде. Правда, вес и размеры комплекта съемочной аппаратуры в этом случае увеличиваются.

Цифровые камеры старшей ценовой группы и полупрофессиональные фотоаппараты (не говоря уже о профессиональных) имеют многоконтактные колодки (так называемые "горячие башмаки") для подключения интеллектуальных автоматических импульсных осветителей. Колодки предназначены для подключения согласованных вспышек, а это означает, что максимальная функциональность внешних осветителей может быть достигнута только с применением полностью совместимых по электрическим контактам и системе управления вспышек. Но это вовсе не исключает работу цифровых фотоаппаратов с остальными, несогласованными фотовспышками. Просто некоторые функции таких осветителей будут недоступны. Список рекомендованных производителем согласованных внешних вспышек приведен в инструкции к каждому фотоаппарату. Вспышки к своим моделям цифровых фотоаппаратов выпускают компании Canon, Nikon, Olympus, Pentax, Sigma. Кроме того, к некоторым моделям цифровых камер подходят вспышки производства Sigma. А среди независимых (то есть среди не производящих цифровые фотоаппараты) фирм можно выделить марку Metz.

Внешние вспышки могут быть автоматическими с развитым управлением и простыми без какой-либо автоматики. Следует заметить сразу, от применения фотовспышек отечественного производства и дешевых моделей азиатского производства следует категорически воздержаться. Причем речь идет не об ограниченной функциональности или качестве вспышки, а о работоспособности самой камеры.

В механическом пленочном фотоаппарате синхроконтакт - это пара электрических контактов, замыкаемых в момент срабатывания затвора. Напряжение на контактах при подключении отечественных вспышек марок "ФИЛ", "Луч", "Электроника", "Фотон" достигает 300 вольт, а при подключении вспышек Unomat (практически, любой модели!) 150 вольт. Со временем высокое напряжение на контактах приводит к тому, что они обгорают. Но это абсолютно не сказывается на работоспособности механической камеры.

Совсем другое дело современные пленочные камеры с развитой автоматикой и тем более цифровые фотоаппараты. Их синхроконтакты рассчитаны на максимальное напряжение до 10 вольт (обычно значение напряжения еще меньше и не превышает 5 вольт). К каким последствиям приведет обгорание синхроконтактов цифрового фотоаппарата, в котором блицавтоматика и электронная начинка интегрированы в единое целое, предсказать трудно. Однако не напрасно производители цифровых камер гарантируют исправную работу только с фирменными, рекомендованными к применению вспышками.

В ряду вспышек Unomat есть весьма соблазнительные модели, вроде B24auto и B20auto. Очень дешевые (30 и 20 долларов соответственно), снабженные независимой от камеры автоматикой (на вспышке устанавливается чувствительность пленки и значение диафрагмы, остальное делает автомат - по интенсивности отраженного освещения устанавливает необходимую для правильной экспозиции мощность импульса), эти вспышки небезопасны для цифровой и зеркальной пленочной камеры по описанным выше причинам. К тому же автоматика вспышек Unomat работает крайне непредсказуемо.

Хорошая согласованная вспышка стоит от 120 долларов и дороже. А определить, будет ли конкретная модель в полной мере функциональной с вашей камерой, можно и на глаз. Для этого надо сравнить контакты на колодках подключения вспышки и фотоаппарата. На камерах разных производителей количество и расположение контактов различно. Совпадает лишь центральный синхроконтакт и, как правило, один сервисный, отвечающий за световую сигнализацию готовности вспышки в видоискателе. Если остальные контакты на вспышке и камере не совпадают, вспышка, скорее всего, совместима, но не согласована. Абсолютно несовместимые вспышки попадаются крайне редко. И все же, выбирая лампу-вспышку, захватите с собой фотоаппарат, чтобы проверить их совместную работу на практике.

Что дает согласованная вспышка? Минимальный функциональный набор состоит из автоматического ввода значения фокусного расстояния объектива (важно при работе с зумом) и установленной автоматом экспозиции или выбранной вручную диафрагмы, из индикации в видоискателе готовности вспышки к работе и автоматического ввода установленного значения светочувствительности сенсора (или чувствительности пленки).

Наиболее совершенные автоматические вспышки позволяют регулировать угол излучения. Стандартное значение угла излучения 45-60 . Увеличение угла приводит к уменьшению ведущего числа вспышки (и, соответственно, ее мощности) и к уменьшению дальности действия, но увеличивает площадь освещения. Уменьшение угла излучения приводит к увеличению ведущего числа вспышки и увеличивает дальность действия. Изменение угла излучения учитывается автоматикой вспышки, а потому пересчета экспозиционных параметров не требуется.

Большинство популярных моделей внешних вспышек, исключая самые дешевые, снабжены поворотной головкой, позволяющей направить световой поток вверх, используя потолок в качестве отражающего экрана. При этом особо важной становится система автоматического определения необходимой мощности излучения вспышки для правильной экспозиции. В самых совершенных моделях система автоматики отрабатывает серию предварительных очень коротких и неярких импульсов (из-за этого они неразличимы глазом), замеряет отраженную освещенность и на основе этих данных устанавливает необходимую мощность срабатывания лампы. При этом во вспышках системы TTL отраженный свет от предварительных импульсов улавливается датчиком, расположенным за основным объективом фотоаппарата, а вспышки, автомат которых рассчитывает мощность вспышки непосредственно во время срабатывания основного импульса, ориентируется на световой поток, отраженный от поверхности светочувствительного материала.


Рис. 9.6.  Вспышка производства Canon


Рис. 9.7.  Вспышка производства Nikon

Подключаемая вспышка обладает рядом несомненных преимуществ перед встраиваемыми фотовспышками. Она универсальна в применении - вспышку можно использовать с любой камерой, имеющей центральный синхроконтакт в колодке подключения. Если же центральный синхроконтакт отсутствует (то есть в фотоаппарате установлен "холодный башмак", как у классической дальномерной камеры Leica или у дальномерных фотоаппаратов отечественного производства и зеркальных "Зенитов"), то вспышку можно подключить к отдельному синхроконтакту кабелем. Если на вспышке гнезда для кабеля нет, можно воспользоваться переходником, который вставляется в колодку фотоаппарата, а уже в него вставляется вспышка. В подобном переходнике предусматривается гнездо для подключения короткого кабеля синхронизации, а сам переходник выполнен поворотным, что позволяет поворачивать вспышку не только вверх или вниз, но и в стороны, изменяя направление светового потока.

Далее - внешняя вспышка обладает большей гибкостью настроек, большей мощностью светового потока и большей дальностью действия. При необходимости направление светового потока вспышки можно направить вверх, получая источник мягкого рассеянного освещения. Встроенная же вспышка всегда направлена вперед.

Наконец, внешняя вспышка не расходует энергию источников питания цифрового фотоаппарата. Питание автономной вспышки осуществляется от собственных перезаряжаемых аккумуляторов или от совместимых по формату сменных элементов (обычно АА). То есть при истощении аккумуляторов их можно безболезненно заменить обычными "батарейками". В цифровой камере это затруднительно, поскольку энергии сухих элементов хватит всего на десяток-другой кадров.

Недостатками внешних фотовспышек можно считать их размеры и вес. Небольшие по габаритам, они все же занимают место в кофре фотографа, а при подключении к камере, увеличивают размеры фотоаппарата. Но это совсем небольшая цена за те удобства, которые предоставляют фотолюбителю внешние импульсные фотоосветители.

Практика применения вспышек в пленочной фотографии включает в себя и определение значения устанавливаемой диафрагмы объектива в зависимости от расстояния до объекта съемки и чувствительности пленки. Подключать к цифровому фотоаппарату неавтоматическую вспышку по уже упомянутым выше причинам категорически не рекомендуется. Да и странно как-то использовать 20-долларовую простейшую вспышку с цифровой камерой стоимостью в 600 долларов (только в таких фотоаппаратах предусмотрена ручная установка выдержки и диафрагмы). Но если все же придется (или наряду с цифровым фотоаппаратом фотолюбитель использует и пленочную классику, что, кстати, совершенно обосновано и в высшей степени правильно - хотя бы для совершенствования мастерства), то вот свод элементарных правил пользования простой неавтоматической вспышкой.

Выдержка, при которой вспышка синхронизируется с затвором фотоаппарата, у дальномерных механических фотоаппаратов и зеркальных "Зенитов" единственная - 1/30 с, у импортных фотоаппаратов - от 1/30 до 1/125 с (выдержка синхронизации помечена красными цифрами), у фотоаппаратов с центральным затвором - любая. Поэтому выбирать приходится один экспозиционный параметр - значение диафрагмы. Оно определяется по калькулятору на задней стенке корпуса вспышки.

Калькулятор представляет собой либо составной поворотный лимб, либо таблицу. Сначала рассмотрим таблицу. По одной оси таблицы (например, по вертикали) нанесены значения чувствительности пленки, по другой - расстояние в метрах. Отыскиваем столбец, соответствующий установленной чувствительности сенсора или пленки. По горизонтали находим строку, соответствующую расстоянию до снимаемого объекта. В ячейке пересечения столбца и строки увидим значение диафрагмы, которую требуется установить для правильной экспозиции.

Если на вспышке установлен поворотный лимб, то сначала на внутренней шкале выставляем значение чувствительности сенсора. При этом риски лимба, обозначающие значения диафрагмы, совпадут с рисками основной шкалы, то есть напротив значений расстояния будут располагаться значения диафрагмы объектива. Устанавливаем правильную диафрагму и снимаем.

Используя неавтоматические вспышки (обычно отечественного производства), легко заметить несоответствие значений светочувствительности по ГОСТу и значений светочувствительности импортной фотопленки или сенсора цифрового фотоаппарата по системе ISO. Как поступать в этом случае? Сложного пересчета не потребуется. Система ISO отличается от ГОСТа в основном лишь стандартным численным рядом. Если мы установим вместо 100 единиц ISO 90 по ГОСТу (если нет отметки 90 единиц, сгодится и 130), то погрешность будет не столь значительной, чтобы серьезно повлиять на экспозицию. Соответственно, вместо 200 единиц ISO на калькуляторе вспышки можно установить 130 единиц ГОСТ (погрешность будет чуть выше), вместо 400 единиц ISO - 350 единиц по ГОСТу. В любом случае, отклонения в определении значения диафрагмы будут меньше разброса освещенности, который дают старые неавтоматические фотовспышки. А необходимые коррективы можно внести в ходе практической съемки - ориентируясь по выведенному на контрольный дисплей результату.

И еще - когда излучатель вспышки направлен не прямо на снимаемый объект, а в сторону, на отражающую поверхность, то при расчете значения диафрагмы следует учитывать увеличившееся расстояние до объекта. При этом для упрощения расчета можно исходить из того, что отражающая поверхность не уменьшает световой поток более чем вдвое (то есть на одну ступень диафрагмы в сторону увеличения относительного отверстия). К примеру, направляем излучатель вспышки на потолок под углом в 45 . При этом луч отразится от потолка тоже под углом в 45 . Получаем равнобедренный треугольник, основание которого будет равно расстоянию от излучателя до точки отражения на потолке. Определяем на глаз или при помощи дальномера фотоаппарата расстояние от камеры до объекта, умножаем его на два, отыскиваем на калькуляторе вспышки нужное значение диафрагмы и увеличиваем его на одну ступень.

<

Содержание раздела